If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35n^2+110n-80=0
a = 35; b = 110; c = -80;
Δ = b2-4ac
Δ = 1102-4·35·(-80)
Δ = 23300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{23300}=\sqrt{100*233}=\sqrt{100}*\sqrt{233}=10\sqrt{233}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(110)-10\sqrt{233}}{2*35}=\frac{-110-10\sqrt{233}}{70} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(110)+10\sqrt{233}}{2*35}=\frac{-110+10\sqrt{233}}{70} $
| 10x+10=100-5x | | -5(4t-2)+6t=2t-3 | | 6x-30=15(2x+6) | | 5+-8x+40=5-3x | | x^2+5*x+7=1 | | λ=7A(3x+6B) | | 3z+6=-6 | | 12b=-180 | | 12x+19x-6+5=-5x+5-6 | | -2x+3=5-x | | 13.5=-2.7x^2+50x | | 15/30=x/90 | | -5x+4+9x-6=2x+8 | | 9/7=x/28 | | 1=8-7m | | 0.8x+0.04x=6 | | 2/3(x−2)=4x. | | 3(x-11)=8(x-5) | | 5n+9=104 | | 2e-21=0 | | 25x^2-10x+1=43 | | 11g+9=154 | | 2e-21=2*10^21 | | 7/13=x/65 | | c/2=30 | | 3x-11=8x-5 | | -4/7w=8 | | 2x+8=x+14,5 | | 132/r=63 | | -8-9v=6v+65 | | 33(2x+1)=8x+21 | | X=7+-7x |